\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}=\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+\frac{1}{2.2.2.2}=\frac{1.2.2.2}{2.2.2.2}+\frac{1.2.2}{2.2.2.2}+\frac{1.2}{2.2.2.2}+\frac{1}{2.2.2.2}\)
\(=\frac{8+2+2+1}{16}=\frac{13}{16}\)
\(A=\frac{1}{2}+^{^{^{ }}}\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}\)
\(2A-A=1-\frac{1}{2^4}\)
\(A=1-\frac{1}{16}=\frac{15}{16}\)