\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{2009.2011}=(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2009.2011}):2\)
\(=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right):2=\left(1-\frac{1}{2011}\right):2=\frac{1}{2}-\frac{1}{4022}=...\)
\(\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\cdot\cdot\cdot+\frac{2}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}\cdot\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)