\(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{999.1000}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{999}-\frac{1}{1000}\)
\(=1-\frac{1}{1000}=\frac{999}{1000}\)
Đặt
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{999.1000}\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(\Leftrightarrow A=1-\frac{1}{1000}\)
\(\Leftrightarrow A=\frac{999}{1000}\)
Đặt:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow A=1-\frac{1}{100}\)
\(\Leftrightarrow A=\frac{99}{100}\)