\(=101+102+...+200\)= \(\frac{\left(200-101+1\right)}{2}\times\left(101+200\right)=15050\)
\(=101+102+...+200\)= \(\frac{\left(200-101+1\right)}{2}\times\left(101+200\right)=15050\)
Chứng minh :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Chứng tỏ :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(CTR:1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}\)
chứng minh rằng
\(A=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}< 1\)1
CM \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}\)
Chứng minh rằng :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Chứng tỏ:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\) < 1
Chứng minh rằng :
\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}<1\)
\(\text{Chứng tỏ:}\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}\)