Biết F(x) là nguyên hàm của f(x) trên R thỏa mãn ∫ 1 e F ( x ) d ( ln x ) = 3 và F(e)=5 Tính I = ∫ 1 e ln x . f ( x ) d x
A. I = 3
B. I = –3
C. I = 2
D. I = –2
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Biết F(x) là nguyên hàm của f(x) trên R thỏa mãn ∫ 1 e F ( x ) d ( ln x ) = 3 và F ( e ) = 5 Tích phân ∫ 1 e ln x . f ( x ) d x bằng
Cho f ( x ) = x 3 + a x 2 + b x + c và g ( x ) = f ( d x + e ) với a , b , c , d , e ∈ ℝ có đồ thị như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số y=f(x) Diện tích hình phẳng giới hạn bởi hai đường congy=f(x) và y=g(x) gần nhất với kết quả nào dưới đây?
A. 4,5
B. 4,25
C. 3,63
D. 3,67
Tìm nguyên hàm F(x) của hàm số f ( x ) = 3 x 2 - e - x thỏa mãn F(0)=3
Câu 1. Đường thẳng nào cho dưới đây là tiệm cận ngang của đồ thị hàm số
A. y = -2
B. y = -1
C. x = 2
D. y = 2
Câu 2. Cho hàm số f(x) = x2lnx. Tính f'(e)
A. 3e
B. 2e
C. e
D. 2 + e
Câu 3. Viết công thức tính V của khối cầu có bán kính r.
Câu 4. Thể tích khối chóp tứ giác đều có tất cả các cạnh bằng 6 gần bằng số nào sau đây nhất?
A. 48
B. 46
C. 52
D. 51
Câu 5. Tìm tập xác định D của hàm số y = ln(x2 - 3x)
A. D = (0;3)
B. D = [0;3]
C. D = (-∞;0)∪(3;+∞)
D. D = (-∞;0)∪[3;+∞)
Cho các hàm số: f ( x ) = 20 x 2 - 30 x + 7 2 x - 3 ; F ( x ) = ( a x 2 + b x + C ) 2 x - 3 với x > 3 2 . Để F(x) là một nguyên hàm của f(x) thì giá trị của a,b,c lần lượt là:
A. a = 4; b = 2; c= 1
B. a = 4; b = -2; c = -1
C. a = 4; b = -2; c = 1
D. a = 4; b = 2; c = -1 .
Cho hàm số \(f\left(x\right)\) có đạo hàm bằng \(f'\left(x\right)=x^2\left(x-1\right)^3\left(x-2\right)\) . Số điểm cực trị của hàm số \(f\left(x\right)\) bằng:
A.0 B.1 C.2 D.3
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d ( v ớ i a , b , c , d ∈ ℝ , a > 0 ) . Biết đồ thị hàm số y=f(x) này có điểm cực đại A (0;1) và điểm cực tiểu B(2;-3). Hỏi tập nghiệm của phương trình f 3 ( x ) + f ( x ) - 2 f ( x ) 3 = 0 có bao nhiêu phần tử?
A. 2019
B. 2018
C. 9
D. 8
Cho hai hàm số f ( x ) = a x 3 + b x 2 + c x - 1 2 và g ( x ) = d x 2 + e x + 1 ( a , b , c , d , e ∈ ℝ ) . Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại ba điểm có hoành độ lần lượt là –3; –1;1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng
A. 9 2
B. 8
C. 4
D. 5