Chọn D.
+ Thể tích hình trụ được tính bằng công thức V = πr2h
+ Diện tích xung quanh của hình trụ là Sxq = 2πrh = 2πa2.
Chọn D.
+ Thể tích hình trụ được tính bằng công thức V = πr2h
+ Diện tích xung quanh của hình trụ là Sxq = 2πrh = 2πa2.
Cho hình chóp S.ABC đáy ABC là tam giác vuông tại C, có cạnh AB a = , cạnh bên SA vuông góc mặt phẳng đáy và SA a = 3 . Tính thể tích V khối cầu ngoại tiếp hình chóp.
A. V= 2 2 3 3 a .
B. V= 3 4a .
C. V= 32 3 3 πa .
D. V= 4 3 3 πa .
Cho biết I = ∫ 0 π 4 sin x + 3 cos x sin x + cos x d x = πa + lnb (0<a<1; 1<b<3). Tích a.b bằng bao nhiêu?
Có ∫ 0 π 4 cos x sin x + cos x d x = π a + ln c b với a , b , c ∈ ℤ thì a 2 + b + c là:
A. 14
B. 66
C. 66 + 2
D. 70
Có ∫ 0 π 4 cos x sin x + cos x d x = π a + 1 b ln c với a , b , c ∈ ℤ thì a 2 + b + c là:
A. 14
B. 66
C. 66 + 2
D. 70
Cắt một vật thể (T) bởi hai mặt phẳng (P) và (Q) vuông góc với trục Ox lần lượt tại x=a, x=b (a<b). Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm x a ≤ x ≤ b cắt (T) theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên đoạn [a;b]. Thể tích V của phần vật thể (T) giới hạn bởi mặt phẳng (P) và (Q) được cho bởi công thức nào dưới đây?
A. V = ∫ a b S x d x
B. V = π ∫ a b S x d x
C. V = π 2 ∫ a b S x d x
D. V = π ∫ a b S 2 x d x
Cắt một vật thể (T) bởi hai mặt phẳng (P) và (Q) vuông góc với trục Ox lần lượt tại x=a; x=b. Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm x cắt (T) theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên đoạn [a;b]. Thể tích V của phần vật thể (T) giới hạn bởi mặt phẳng (P) và (Q) được cho bởi công thức nào dưới đây?
Cho hình nón tròn xoay (N) có đỉnh S và đáy là hình tròn tâm O bán kính r nằm trên mặt phẳng (P) đường cao SO=h Điểm O’ thay đổi trên đoạn SO sao cho SO’=x (0<x<h). Hình trụ tròn xoay (T) có đáy thứ nhất là hình tròn tâm O bán kính r’ (0<r’<r) nằm trên mặt phẳng (P), đáy thứ hai là hình tròn tâm O’ bán kính r’ nằm trên mặt phẳng (Q), (Q) vuông góc với SO tại O’ (đường tròn đáy thứ hai của (T) là giao tuyến của (Q) với mặt xung quanh của (N). Hãy xác định giá trị của x để thể tích phần không gian nằm phía trong (N) nhưng phía ngoài của (T) đạt giá trị nhỏ nhất.
Cho hình cầu tâm O bán kính R , tiếp xúc với mặt phẳng (P) . Một hình nón tròn xoay có đáy nằm trên (P), có chiều cao h = 15 , có bán kính đáy bằng R . Hình cầu và hình nón nằm về một phía đối với mặt phẳng (P) . Người ta cắt hai hình đó bởi mặt phẳng (Q) song song với (P) và thu được hai thiết diện có tổng diện tích là S . Gọi x là khoảng cách giữa (P) và (Q), ( 0 < x ≤ 5 ) . Biết rằng S đạt giá trị lớn nhất khi x = a b (phân số a b tối giản). Tính giá trị T =a+b .
Cho hình lăng trụ tam giác đều có cạnh đáy và cạnh bên đều bằng a. Gọi S là diện tích xung quanh của hình lăng trụ trên. Tính S.
A. S = 3 a 2 4
B. S = 5a2
C. S = 3 a 2 2
D. S = 3a2.
Kí hiệu T là hình thang vuông giới hạn bởi đường thẳng y = 2x + 1, trục hoành và hai đường thẳng x = 1, x = t (1 ≥ t ≥ 5) (H.45).
1. Tính diện tích S của hình T khi t = 5 (H.46).
2. Tính diện tích S(t) của hình T khi x ∈ [1; 5].