Đáp án D
Phương pháp:
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) , trục Ox, đường thẳng
Để tìm đủ cận tích phân ta đi giải phương trình f(x) = 0.
Sử dụng phương pháp tích phân từng phần để tính toán.
Cách giải:
Đáp án D
Phương pháp:
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) , trục Ox, đường thẳng
Để tìm đủ cận tích phân ta đi giải phương trình f(x) = 0.
Sử dụng phương pháp tích phân từng phần để tính toán.
Cách giải:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = e x - e - x , trục hoành, đường thẳng x = -1 và đường thẳng x = 1.
A. e + 1 e - 2
B. 0
C. 2 e + 1 e - 2
D. e + 1 e
Cho hàm số y = 9 - 4 x 2 có đồ thị là (C) . Tính diện tích hình phẳng giới hạn bởi đồ thị (C ) , trục Ox, hai đường thẳng x = 3 4 và x = 3 3 4
A. 3 π 8
B. 3 π 4
C. 3 π 16
D. 3 π 2
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Tính diện tích hình phẳng giới hạn bởi : Đồ thị hàm số y = x 3 - 4x , trục hoành, đường thẳng x = 2 và đường thẳng x =4
A. 18
B. 24
C.32
D.36
Tính diện tích hình phẳng giới hạn bởi : Đồ thị hàm số y = e x +1 , trục hoành , đường thẳng x = 0 và đường thẳng x = 1
A.e
B. 2+e
C.e-1
D.2e+1
Tính thể tích hình tròng xoay khi quay quanh trục Ox một hình phẳng giới hạn bởi đồ thị hàm số y = 2 x + 1 x 2 + x + 1 trục Ox, hai đường thẳng x = 1 và x = 3.
A. π 13 13 - 3 3 3
B. π 26 13 + 6 3 3
C. π 26 13 - 6 3 3
D. π 2 13 13 + 3 3 3
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = 2 x - 1 2 , trục hoành, đường thẳng x = 2 và đường thẳng x = 3.
A. 3
B. 2
C. 1
D. 4
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x + 1 ln x ; các đường thẳng x=1; x = e 2 và trục hoành
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = 1 - 1 x 2 , trục hoành và đường thẳng x = 1 và đường thẳng x = 2.
A. 0,3
B. 0,2
C. 0,4
D. 0,5