a) \(\frac{\left(-1\right)^3}{15}+\left(-\frac{2}{3}\right):2\frac{2}{3}-\left|-\frac{5}{6}\right|\)
b) \(1\frac{5}{13}-0,\left(3\right)-\left(1\frac{4}{9}+\frac{18}{13}-\frac{1}{3}\right)\)
c) \(\left|97\frac{2}{3}-125\frac{3}{5}\right|+97\frac{2}{5}-125\frac{1}{3}\)
d) \(\frac{2\cdot6^9-2^5\cdot18^4}{2^2\cdot6^8}\)
Tính
A=\(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1\cdot99}+\frac{1}{3\cdot97}+\frac{1}{5\cdot95}+...+\frac{1}{97\cdot3}+\frac{1}{99\cdot1}}\)
Tính \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
Tính nhanh : A= \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{3^3}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
Tính giá trị của biểu thức \(A=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right).\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{19^3}\right).\left(\frac{1}{125}-\frac{1}{20^3}\right)\)
thực hiện phép tính :
a, \(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{\frac{7}{6}-58+5+0,7}\)
b, \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
c, \(\frac{\frac{3}{7}-\frac{3}{17}+\frac{3}{37}}{\frac{5}{7}-\frac{5}{17}+\frac{5}{37}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}}{\frac{7}{5}-\frac{7}{4}+\frac{7}{3}-\frac{7}{2}}\)
Mong các bạn giúp đỡ nhé
TÍNH NHANH
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{3^3}\right)\cdot\cdot\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
Tính nhanh:
a, A= \(\frac{1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{99.1}}\)
b, B=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Thuc hien phep tinh:
a/\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}\)+ \(\frac{0,6-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-0,16-\frac{4}{125}-\frac{4}{625}}\)
b/ \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)