cho x;y;z #0 thoa man 1/xy + 1/yz + 1/zx =0
tinh N = x2/yz + y2/xz + z2/xy
cho x2+y2+z2=xy+xz+yz, x+y+z=1
tinh x,y,z
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
Cho x,y,z#0 và 1/xy+1/yz+1/xz=0
tính x^2/yz+y^2/xy+z^2/xy
Cho 1/x + 1/y + 1/z = 0 ( x,y,z khác 0 )
Tinh yz/x2 + xz/y2 + xy/z2
Cho 1/x + 1/y + 1/z =0 Tính A = yz/x^2 + xz/y^2 + xy/z^2
Cho x,y,z dương. Cmr 1/(x-y)^2 +1/(y-z)^2+1/(z-x)^2>=4/(xy+xz+yz)
câu1 .a2+b2-a2b2+ab-a-b
câu 2 . xy.(x+y)-yz.(y+z)+xz(x-z)
câu3 .xyz-(x+y+yz+xz)+(x+y+2)-1
Cho x, y, z thỏa: x+y+z=a ; x^2+y^2+z^2=b ; 1/x+1/y+1/z=1/c Tính xy + yz +xz và x^3+y^3+z^3 theo a,b,c