Cho số phức z = a + bi (với a,b là các số thực). Xét các phát biểu sau:
1:\(z^2-\overline{z}^2\) là số thực
2:\(z^2+\overline{z^2}\) là số ảo
3:\(z.\overline{z}\) là số thực
4:\(\left|z\right|-z\) bằng 0
Có bao nhiêu mệnh đề đúng?
A:0
B:1
C:2
D:3
Cho các số phức z thoả mãn z = 2 . Đặt w = ( 1 + 2 i ) z - 1 + 2 i . Tìm giá trị nhỏ nhất của w
A. 2
B. 3 5
C. 2 5
D. 5
Cho các số phức z 1 = 1 , z 2 = 2 − 3 i và các số z thỏa mãn z − 1 − i + z − 3 + i = 2 2 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − z i + z − z 2 . Tính tổng
A. S = 4 + 2 5 .
B. S = 5 + 17 .
C. S = 1 + 10 + 17 .
D. S = 10 + 2 5 .
Xét các số phức z = a +bi thỏa mãn z - 3 - 2 i = 2 Tính a-b biết biểu thức S = z + 1 - 2 i + 2 z - 2 - 5 i đạt giá trị nhỏ nhất.
A. - 3
B. 3
C. 4
D. 0
Xét các số phức z=a+bi ( a , b ∈ R ) thỏa mãn z - 3 - 2 i = 2 . Tính a+b khi z + 1 - 2 i + 2 z - 2 - 5 i đạt giá trị nhỏ nhất.
Cho số phức z=(1-2i)(4-3i)-2+8i. Cho các phát biểu sau:
(1) Modun của z là một số nguyên tố
(2) z có phần thực và phần ảo đều âm
(3) z là số thuần thực
(4) Số phức liên hợp của z có phần ảo là 3i
Số phát biểu sai là:
A. 1
B. 2
C. 3
D. 4
Trong không gian Oxyz cho đường thẳng d : x 2 = y 2 = z + 3 - 1 và mặt cầu ( S ) : ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi △ là đường thẳng đi qua A(2;1;3), vuông góc với đường thẳng d và cắt (S) tại hai điểm có khoảng cách lớn nhất. Khi đó đường thằng △ có một véctơ chỉ phương là u → = ( 1 ; a ; b ) . Tính
A. 4
B. -2
C. - 1 2
D. 5
Xét các số phức z thỏa mãn |z+1+i| = 3.Đặt w = z + 2i -3. Tìm Max |w|
A. Max = 9
B.Max = 8
C. Max = 6
D. Max =5
Xét các số phức z thỏa mãn |z+1+i| = 3.Đặt w = z + 2i -3. Tìm Max |w|
A. Max = 9
B.Max = 8
C. Max = 6
D. Max =5