Ta có: \(C=5+\frac{5}{2}+\frac{5}{2^2}+\frac{5}{2^3}+...+\frac{5}{2^{10}}\)
\(\Rightarrow\frac{C}{2}=\frac{5}{2}+\frac{5}{2^2}+\frac{5}{2^3}+\frac{5}{2^4}+...+\frac{5}{2^{11}}\)
Trừ vế với vế ta được:
\(C-\frac{C}{2}=\left(5+\frac{5}{2}+...+\frac{5}{2^{10}}\right)-\left(\frac{5}{2}+\frac{5}{2^2}+...+\frac{5}{2^{11}}\right)\)
\(\Leftrightarrow\frac{C}{2}=5-\frac{5}{2^{11}}\)
\(\Leftrightarrow C=10\cdot\frac{2^{11}-1}{2^{11}}\)
Ta có C = 5 + 5/2 + 5/2^2 + . . . + 5/2^10
2C = 10 + 5 + 5/2 + . . . + 5/2^9
2C -C = ( 10 + 5 + 5/2 + . . . + 5/2^9 ) - ( 5 + 5/2 + 5/2^2 + . . . + 5/2^10 )
C = 10 - 5/2^10 = 10 - 5/1024 = 10235/1024
Vậy C = 10235/1024