*2010/1+2009/2+...+1/2010
=(2009/2+1)+(2008/3+1)+...+(1/2010+1)+1
=2011/2+2011/3+..+2011/2010+2011/2011
=2011(1/2+1/3+1/4+...+1/2011)
=> C=2011/1=2011
*2010/1+2009/2+...+1/2010
=(2009/2+1)+(2008/3+1)+...+(1/2010+1)+1
=2011/2+2011/3+..+2011/2010+2011/2011
=2011(1/2+1/3+1/4+...+1/2011)
=> C=2011/1=2011
Cho A = 1/2001+2/2009+3/2008+........2009/+ 2010/1, B = 1+1/2+1/3+1/4+1/5+1/6+.......1/2010+1/2011. Tính A/B
Tính :
\(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+....+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2011}}\)
Tinh\(\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{2}{2009}+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2010}+\frac{1}{2011}}\)
Bài 5:1/2+1/3+...+1/2008).x=2009/1+2010/2+2011/3+5016/2008-2008
(2008 x 2009 x 2010 x 2011) x (1 + 1/2 : 3/2 - 4/3)
Tính tổng sau:
(-1)+2+(-3)+4+(-5)+...+2008+(-2009)+2010+(-2011)+2012
Tính giá trị biểu thức : C=1-2-3+4+5-6-7+8+.....+2008+2009-2010-2011+2012
1-2-3+4+5-6-7+...+2008+2009-2010-2011
\(B=\frac{\frac{2008}{2011}+\frac{2009}{2010}+\frac{2010}{2009}+\frac{2011}{2008}+\frac{2012}{503}}{\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}}\)