Nhân 1/2B lên, ta được:
1/2B=(1/2)^2+(1/2)^3+...+(1/2)^100
lấy B-1/2B, ta được: 1/2B=1/2-(1/2)^100
=>B= (1/2-(1/2)^100)/2
Nhân 1/2B lên, ta được:
1/2B=(1/2)^2+(1/2)^3+...+(1/2)^100
lấy B-1/2B, ta được: 1/2B=1/2-(1/2)^100
=>B= (1/2-(1/2)^100)/2
Tính \(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+......+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\) ta được B=
Tính B = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+....\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)
Còn thiếu mũ 99 ở cuối cùng nha
Tính B=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{98^2}-1\right).\left(\frac{1}{99^2}-1\right)\)
Tính \(\left(\frac{1}{2^2-1}\right)\left(\frac{1}{3^2-1}\right)\left(\frac{1}{4^2-1}\right)...\left(\frac{1}{98^2-1}\right)\left(\frac{1}{99^2-1}\right)\)
a, Tính : \(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b, Tính : \(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
c, Tính : \(\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
Tính B = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+......+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}\)
Thực hiện phép tính :
a, A =\(\left(1:\frac{5^2}{10^2}\right).\left(1\frac{1}{1}\right)^2+25.\left[1:\left(\frac{4}{3}\right)^2:\left(\frac{5}{4}\right)^3\right]:\left(1:\frac{-8}{27}\right)\)
b, B =\(\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{100^2}\right)\)
Tính \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)
Tinh \(B=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot....\cdot\left(\frac{1}{98^2}-1\right)\cdot\left(\frac{1}{99^2}-1\right)\)