Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duykun

Tính \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{99.100.101}\)

Nga Phạm Dương Tuyết
14 tháng 3 2017 lúc 19:52

=1+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{2}\) -\(\frac{1}{3}\) -\(\frac{1}{4}\)+\(\frac{1}{3}\) - \(\frac{1}{4}\)-\(\frac{1}{5}\)+.....+\(\frac{1}{99}\)-\(\frac{1}{100}\)-\(\frac{1}{101}\)

=1+\(\frac{1}{101}\)

=\(\frac{102}{101}\)

Uzumaki Naruto
14 tháng 3 2017 lúc 19:58

1/1.2.3 = 1/2 .[1/1.2 - 1 / 2.3]

1/2.3.4 = 1/2[ 1/2- 1/3 ] 

...................

1/99.100.101 = 1/2[ 1/99. 100 - 1/100.101]

=> A= 1/2 [ 1/1.2- 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/ 4.5 +.........+ 1/99 .100 - 1/100. 101]

A = 1/2 . [1/1.2 -1/100 .101]

A= 1/2 . 5049 /10100 = 5049 / 20200.

Mình nghĩ là vậy đó.

Khôi Nguyên Hacker Man
14 tháng 3 2017 lúc 19:59

a=100/101


Các câu hỏi tương tự
Nguyễn Trúc Quỳnh
Xem chi tiết
Tạ Tiểu Mi
Xem chi tiết
marivan2016
Xem chi tiết
GT 6916
Xem chi tiết
Hoàng Như Anh
Xem chi tiết
Nguyễn Mai Linh
Xem chi tiết
Phạm Thu Huyền
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
GT 6916
Xem chi tiết