Ta có: A = 22012 - 22011 - 22010 - ... - 21 - 20
=> 2A = 22013 - 22012 - 22011 - ... - 22 - 2
=> 2A + A = (22013 - 22012 - 22011 - ... - 22 - 2) + (22012 - 22011 - 22010 - ... - 21 - 20)
=> 3A = 22013 - 20
=> 3A = 22013 - 1
=> A = \(\frac{2^{2013}-1}{3}\)
Ta có: A = 2 2012 - 2 2011 - 2 2010 - ... - 2 1 - 2 0
=> 2A = 2 2013 - 2 2012 - 2 2011 - ... - 2 2 - 2 => 2A + A = (2 2013 - 2 2012 - 2 2011 - ... - 2 2 - 2) + (2 2012 - 2 2011 - 2 2010 - ... - 2 1 - 2 0 )
\(A=2^{2012}-2^{2011}-2^{2010}-...-2^1-2^0\)
\(\Rightarrow2A=2^{2013}-2^{2012}-2^{2011}-...-2^2-2^1\)
\(\Rightarrow2A+A=\left(2^{2013}-...-2^1\right)+\left(2^{2012}-...-2^0\right)\)
\(\Rightarrow3A=2^{2013}-2^0\Rightarrow A=\frac{2^{2013}-2^0}{3}\)