\(A=1+\frac{1+2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{16}.\frac{\left(1+16\right).16}{2}\)
\(A=1+\frac{1+2}{2}+\frac{1+3}{2}+...+\frac{1+16}{2}=1+\frac{\left(1+1+...+1\right)+\left(2+3+...+16\right)}{2}\)
\(A=1+\frac{15+\frac{\left(2+16\right).15}{2}}{2}=1+\frac{150}{2}=76\)