Số số hạng : (3n + 1 - 1) : 3 + 1 = n + 1 số
Tổng A = (1 + 3n + 1) x (n+1) : 2 = (3n + 2).(n+1) / 2
Số số hạng là :
( 3n + 1 - 1 ) : 3 + 1 = n + 1 ( số )
Tổng A là :
( n + 1 + 1 ) . ( n+1 ) : 2 = ( n+2) . (n+1) : 2
Khoảng cách là 3 đơn vị.
Số các số hạng là :
[(3n + 1) - 1)] : 3 = 3n : 3 = n (số hạng)
Tổng A là :
[(3n + 1) + 1] . n : 2 = (3n + 2) . n : 2 = (3n2 + 2n) : 2 = \(\frac{3n^2}{2}\) + n
Vậy A = \(\frac{3n^2}{2}+n\)