A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
Đặt A1 = 1/2^1 + 1/2^2 + ... + 1/2^100
A2 = 1/2^2 + 1/2^3 + ... + 1/2^100
A3 = 1/2^3 + 1/2^4 + ... + 1/2^100
....................................
...................................
A100 = 1/2^100
A = 1/2^1 + 2/2^2 + 3/2^3 + 4/2^4 + ... + 100/2^100 =
= (1/2^1+1/2^2 +...+ 1/2^100) + (1/2^2+1/2^3 +...+ 1/2^100) + (1/2^3+1/2^4 +...+ 1/2^100) + ... + (1/2^100) = A1 + A2 + A3 + ... + A100
2^101 A1 = 2^100 + 2^99 + 2^98 + ... + 2 (1)
2^100 A1 = 2^99 + 2^98 + 2^97 + ... + 1 (2)
(2) trừ (1) ---> 2^100 A1 = 2^100 - 1 ---> A1 = (2^100 - 1) / 2^100 = 1 - 1/2^100
Tương tự
2^101 A2 = 2^99 + 2^98 + 2^97 +...+ 2 (3)
2^100 A2 = 2^98 + 2^97 + 2^96 +...+ 1 (4)
(4) trừ (3) ---> 2^100 A2 = 2^99 - 1 ---> A2 = (2^99 - 1) / 2^100 = 1/2 - 1/2^100
Tương tự
A3 = 1/4 - 1/2^100 = 1/2^2 - 1/2^100
A4 = 1/2^3 - 1/2^100
..................................
.................................
A100 = 1/2^99 - 1/2^100
Vậy A = A1 + A2 + A3 +...+ A100 = (1 + 1/2 + 1/2^2 + ... + 1/2^99) - 100/2^100
= 2 A1 - 100/2^100 = 2 - 2/2^100 - 100/2^100 = 2 - 51/2^99
bài này dễ hiểu mà ĐỖ ANH THƯ ;TRƯƠNG BẢO NGỌC
patê bíp Thủy , patê bíp Khánh Ly, patê bíp Hà Trang
mấy cậu này ko biết viết theo dạng phân só sao
nhìn khó lắm mặc dù bài làm đúng
Bạn viết dưới dạng phân số với số mũ đi cho dễ nhìn. Nhìn thế này rối lắm.
Mình hiểu và biết làm bài này nhưng nó dài quá nên mình không viết ra
Xin lỗi nhé