\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=1-\frac{1}{2^{100}}\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=1-\frac{1}{2^{100}}\)
\(A=1-\frac{1}{2^{100}}\)
Tinh
A=1+1/2(1+2)+1/3(1+2+3)+...+1/100(1+2+3+...+100)
tinh a= (1/2^2-1)(1/3^2-1)(1/4^2-1)...(1/100^2-1)
tinh S= 1+1/2(1+2)+1/3(1+2+3)+...+1/100(1+2+3+...+100)
tinh A=1+3/2^3+4/2^4+....+100/2^100
Tinh [1\2^2-1].[1\3^2-1]....[1\100^2-1]
Tinh A = 1^2 + 2^2 + 3^2 + ... + 99^2+100^2
tinh: B= (1/2)-(1/2^2)+(1/2^3)-(1/2^4)+...+(1/2^99)-(1/2^100)
Tinh S = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{100}\left(1+2+3+...+100\right)\)
Tinh a) \(\frac{\left(1+2+3+....+100\right).\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..............+\frac{1}{100}}\)