\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\).
\(A=1+\frac{1}{2}.3+\frac{1}{3}.6+....+\frac{1}{16}.136\)
\(A=1+1,5+2+...+8,5\)
\(A=\frac{\left(8,5+1\right)\left[\left(8,5-1\right):0,5+1\right]}{2}=76\)
A = 1 + 1/2 x 2x3/2 + 1/3 x 3x4/2 +.............+ 1/16 x 16x17/2
A = 1+ 3/2 +4/2 + ............+ 17/2
A = 1+ (3+4+5+.........+17)/2
A = 1+75 = 76
1+2+3x(-2)+4x(1+2+3)+...+16x(1+2+3+...+15)
A=1+3/2+2+...+17/2
A=2/2+3/2+4/2+...+17/2
A=(2+3+4+5+...+17)/2=144/2=76