Tính A=(1/1009+1/1010+...+1/2016+1/2017)(1-1/2+1/3+1/4+...+1/2015+1/2016)
A=(1/1009+1/1010+...+1/2016+1/2017)(1-1/2+1/3-1/4+...+1/2015-1/2016)
A=(1/1009+1/1010+...+1/2016+1/2017).(1-1/2+1/3-1/4+...+1/2015-1/2016)
cho S=1-1/2+1/3-1/4+......+1/2015-1/2016+1/2017 và P=1/1009+1/1010+.....+1/2016+1/2017
Tính (S-P)^2016
A = (\(\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2015}+\frac{1}{2016}\)) :(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\))
Cho S=1-1/2+1/3-1/4+...+1/2013-1/2014+1/2015
Và P=1/1008+1/1009+1/1010+...+1/2014+1/2015
Tính (S-P)^2016
Cho N = 1 - 1/2 + 1/3 - 1/4 +....+ 1/2015 - 1/2016 và
K = 1/1009 + 1/1010 + 1/1011 +...+ 1/2016
Chứng minh N = K
Cho S= 1+1/2+1/3-1/4+...+1/2003-1/2004
P=1/1008+1/1009+1/1010+...+1/2014+1/2015
Tính (S-P)2016
\(A=\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}+\frac{1}{2017}\right): \)\(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\right)\)