Ta có a+b=9
\(\Rightarrow\left(a+b\right)^2=81\)
\(\Rightarrow\left(a-b\right)^2+4ab=81\)
\(\Rightarrow\left(a-b\right)^2=81-4\cdot20=1\)
\(\Rightarrow a-b=\pm1\)
mà a<b nên a-b<0 => a-b=1
Vậy \(\left(a-b\right)^{2017}=-1^{2017}=-1\)
Có a+b = 9 <=> \(\left(a+b\right)^2\) = 81 <=> \(\left(a-b\right)^2\) +4ab= 81 <=> \(\left(a-b\right)^2\) +4.20 = 81
<=> \(\left(a-b\right)^2\) = 1 Mà a<b <=> a-b = -1
Có \(\left(-1\right)^{2017}\) = -1