Tinh
A=1+1/2(1+2)+1/3(1+2+3)+...+1/100(1+2+3+...+100)
tinh: B= (1/2)-(1/2^2)+(1/2^3)-(1/2^4)+...+(1/2^99)-(1/2^100)
tinh A=1/2+1/2^2+1/2^3+.....+1/2^100
tinh A=1+3/2^3+4/2^4+....+100/2^100
tinh S= 1+1/2(1+2)+1/3(1+2+3)+...+1/100(1+2+3+...+100)
Tinh a) \(\frac{\left(1+2+3+....+100\right).\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..............+\frac{1}{100}}\)
tinh
D =1/ 22 +1/ 23 +1/24 +..... +1/ 2100
Tinh [1\2^2-1].[1\3^2-1]....[1\100^2-1]
1) Tinh gia tri cua bieu thuc:
A=\(\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
B=\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^{11}}\)