Ta có : A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
\(\Rightarrow\)3A = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2).....n.(n+1).[(n+2)-(n-1)]
\(\Rightarrow\)3A= 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+n.(n+1)(n+2)-(n-1)n(n+1)
\(\Rightarrow\)3A= (1.2.3-1.2.3)+(2.3.4-2.3.4)+....+[(n-1).n.(n+1)-(n-1)n(n+1)]+n.(n+1)(n+2)
\(\Rightarrow\)3A=n.(n+1)(n+2)
\(\Rightarrow\)A=\(\frac{\text{n.(n+1)(n+2)}}{3}\)