\(A=1.\left[\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\right]\)
\(A=1.\left[1-\frac{1}{50}\right]\)
\(A=\frac{49}{50}\)
mk làm đầu tiên đó
A=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
A=\(1-\frac{1}{50}\)
A=\(\frac{50}{50}-\frac{1}{50}\)
A=\(\frac{49}{50}\)
Vậy A=\(\frac{49}{50}\)