Cho 3 số thực dương a b c thỏa mãn a+b+c =6 . chứng minh rằng (1+1\a³)(1+1\b³)(1+1\c³)>= 729\512
Cho a,b,c > 0 và a+b+c=6. Chứng minh rằng:
\(\left(1+\frac{1}{^{a^3}}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)\ge\frac{729}{512}\)
cho a;b;c >0 va a+b+c=6 c/m
\(\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)>=\frac{729}{512}\)
cho a;b;c >0 va a+b+c=6 c/m
\(\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)>=\frac{729}{512}\)
Cho: a,b,c>0 thỏa mãn a+b+c=6
CMR \(\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)\ge\frac{729}{512}\)
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
Cho a;b;c là các số dương thỏa mãn a+b+c=\(\frac{3}{2}\). Chứng minh rằng:
B= \(\left(1+\frac{1}{a^3}\right)\left(1+\frac{1}{b^3}\right)\left(1+\frac{1}{c^3}\right)\) ≥ 729
Hãy tìm:
∛512 ; ∛-729 ; ∛0,064 ; ∛-0,216 ; ∛-0,008
Tính nhanh:
A=1+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=
B=20+21+22+23+24+25=
C=26+27+28+29+30+31+32+33=
D=1+(tổng các số đến 100)=
[(anpha): a;( * ): độ ;
1,Tính giá trị của biểu thức
a, A= 2sin30*- 2cos60*+tan45*
b, B = cot44*. cot45* . cot46*
c, C= cos60*/(1+sin60*) + 1/ tan30*
d, D=cos^2 15* + cos^2 25* + cos^2 35*+ cos^2 45* + cos^2 55*+ cos^2 65* +cos^2 75* - 3
e, Cho cos a = 1/3. Tính E=3sin^2a+cos^2a