Đặt \(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+......+\frac{2}{100\cdot103}\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\frac{102}{103}\)
\(\Rightarrow B=\frac{68}{103}\)
Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\left(1-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\cdot\frac{102}{103}\)
\(A=\frac{68}{103}\)
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)
\(=\frac{2}{3}\cdot\frac{102}{103}=\frac{68}{103}\)
=\(\frac{1}{3}x\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-\frac{2}{7}+...+\frac{2}{100}-\frac{2}{103}\right)\)
=\(\frac{1}{3}x\left(\frac{2}{1}-\frac{2}{103}\right)\)
=\(\frac{1}{3}x\frac{204}{103}=\frac{68}{103}\)
Đặt A = \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(\Leftrightarrow3A=2\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{100.103}\right)\)
\(3A=2\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(3A=2\left(1-\frac{1}{103}\right)\)
\(3A=2.\frac{102}{103}\)
\(3A=\frac{204}{103}\)
\(\Rightarrow A=\frac{68}{103}\)