Bài 1:Rút gọn phân số
a)\(\frac{-2019\cdot2018+1}{\left(-2017\right)\cdot\left(-2019\right)+2018}\)
b)\(\frac{6\cdot9-2\cdot7}{63\cdot3-119}\)
c)\(\frac{2929-101}{2\cdot1919+404}\)
d)\(\frac{2\cdot3+4\cdot6+14\cdot21}{3\cdot5+6\cdot10+21\cdot35}\)
Tính nhanh :
\(A=\left(1-\frac{2}{6\cdot7}\right)\left(1-\frac{2}{7\cdot8}\right)\left(1-\frac{2}{8\cdot9}\right)\cdot\cdot\cdot\left(1-\frac{2}{51\cdot52}\right)\)
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)\cdot\cdot\cdot\left(1+\frac{1}{99\cdot101}\right)\)
a)A=\(\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+\frac{1}{5\cdot7\cdot9}+...+\frac{1}{25\cdot27\cdot29}\)
b)\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+...+\frac{1}{10\cdot110}\right)\cdot x=\frac{1}{1.11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
Tính tổng :
a) \(\frac{1}{3\cdot5\cdot7}+\frac{1}{5\cdot7\cdot9}+\frac{1}{7\cdot9\cdot11}+...+\frac{1}{2013\cdot2015\cdot2017}\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{2017^2}\right)\)
c) \(\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot...\cdot\left(1-\frac{1}{1+2+3+...+2017}\right)\)
\(t\text{ìm}x\left(\frac{36}{1\cdot3\cdot5}+\frac{36}{3\cdot5\cdot7}+.....+\frac{36}{25\cdot27\cdot29}\right)\cdot x=\frac{4}{25}\)
trình bày cách tính nhanh các phép tính sau đây
a)\(\frac{2^8\cdot6}{3^3\cdot5^4}:\frac{8^3\cdot9}{5^3\cdot3^3}-\left(2^{14}+3^{19}\right)\cdot\left(3^{81}+5^{64}\right)\left(2^4-4^2\right)\)
\(A=\frac{2}{1\cdot3\cdot5}\cdot\frac{2}{5\cdot7\cdot9}\cdot...\cdot\frac{2}{97\cdot99\cdot101}\)
tính
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{\left(2n+1\right)\cdot\left(2n+3\right)}=\frac{n+1}{n+3}\)
1. A = \(\frac{154+919+146+781}{823-217+533-139}\)
2. Tỳm x piết : \(\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{19\cdot21}\right)\). x = \(\frac{9}{7}\)