\(1;\left|x\right|-x=0\)
\(\Leftrightarrow\left|x\right|=x\Rightarrow x=\pm x\)
\(\Leftrightarrow\orbr{\begin{cases}x=x\\x=-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x\inℝ\\x=0\end{cases}}}\)
\(2;\left|x\right|-x=2\)
\(\Leftrightarrow\left|x\right|=2+x\Leftrightarrow x=\pm\left(x+2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x+2\\x=-x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\in\varnothing\\x+x=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\in\varnothing\\2x=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\in\varnothing\\x=1\end{cases}}}\)
3) Nếu \(x\ge0\)thì \(pt\Leftrightarrow3x+x=16\)
\(\Leftrightarrow4x=16\Leftrightarrow x=4\)
Nếu \(x< 0\)thì \(pt\Leftrightarrow-3x+x=16\)
\(\Leftrightarrow-2x=16\Leftrightarrow x=-8\)
1) Nếu \(x\ge0\)thì \(pt\Leftrightarrow x-x=0\Leftrightarrow0=0\)
\(\Leftrightarrow pt\)thỏa mãn với mọi x.\(\inℝ\)
Nếu \(x< 0\)thì \(pt\Leftrightarrow-x-x=0\Leftrightarrow-2x=0\Leftrightarrow x=0\)
Vậy pt thỏa mãn với mọi \(x\inℝ\)
2) Nếu \(x\ge0\)thì \(x-x=2\Leftrightarrow0=2\left(voli\right)\)
Nếu \(x< 0\)thì \(-x-x=2\Leftrightarrow-2x=2\Leftrightarrow x=-1\)
Vậy x = -1