A=(1+1999/1).(1+1992/2).(1+1999/3)...(1+1999/1000)/(1+1000/1).(1+1000/2).(1+1000/3)...(1+1000/1999)
Tính A
CMR:1+1/2+1/3+...+1/21999>1000
\(CMR:\) \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+........+\frac{1}{2^{1999}}>1000\)
A= 1+3+32+33+....+31999+31000
CMR A chia hết cho 13
Giúp mik với
Tính nhanh:
a. A=\(\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\left(n\in N\right)\)
b. B=\(\left(10000-1^2\right)\left(10000-2^2\right)\left(10000-3^2\right)..\left(10000-1000^2\right)\)
c. C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d. D=\(1999^{\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-10^3\right)}\)
tinh \(G=\frac{\left(1+\frac{2015}{1}\right)+\left(1+\frac{2015}{2}\right)+...+\left(1+\frac{2015}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)+....+\left(1+\frac{1000}{2015}\right)}\)
Bài 1:
a,A=\(\left(-1\right)^{2n}\times\left(-1\right)^n\times\left(-1\right)^{n+1},n\in N\)N
b,B=\(\left(10000-1^2\right)\times\left(10000-2^2\right)\times\left(10000-3^2\right)...\left(10000-10000^2\right)\)
c,C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\times\left(\frac{1}{125}-\frac{1}{2^3}\right)....\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d,D=\(1999.^{\left(1000-1^2\right).\left(1000-2^2\right)....\left(1000-10^3\right)}\)
giải nhanh giúp mk nha.À đúng rồi bạn nào có link đáp án đề lớp 7 của thầy NGUYỄN CAO CƯỜNG( tuyển sinh 247) thì chp mk với, tất cả đề cô mk ra đều có trong đó cả!!MK cần gấp lắm
Tinh : (1000-1^3)*(1000-2^3)*(1000-3^3)....(1000-50^3)
Tinh nhanh
a,A=2018^(1*9*4*6)*(9*4*7)***(1*9*9*9)
b,B=(1000—1^3)*(1000—2^3)*(1000—3^3)***(1000—50^3)