Ta có: \(\left\{{}\begin{matrix}p+e+n=52\\p=e\\\dfrac{n}{p}=\dfrac{18}{17}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}p=e=z=17\\n=18\end{matrix}\right.\)
\(\Rightarrow A=z+n=17+18=35\left(u\right)\)
\(\Rightarrow KHNT:^{35}_{17}Cl\)
Ta có: \(p+e+n=13\)
\(\Leftrightarrow2p+n=13\)
\(\Leftrightarrow n=13-p\)
\(\Rightarrow p\le13-2p\le1,5\) (do \(p\le n\le1,5p\))
\(\Leftrightarrow3p\le13\le3,5p\)
\(\Leftrightarrow p\le\dfrac{13}{3}\)
\(\Rightarrow p\in\left\{0;1;2;3;4\right\}\)
Xét \(\text{p = 0 ⇒ n = 0 ⇒ p + e + n }=0\left(loại\right)\)
Xét \(\text{p = 1 ⇒ n = 1 ⇒ p + e + n }=3\left(loại\right)\)
Xét \(p = 2 ⇒ \left\{{}\begin{matrix}n=2\Rightarrow p+e+n=6\left(loại\right)\\n=3\Rightarrow p+e+n=7\left(loại\right)\end{matrix}\right.\)
Xét \(p=3⇒\left\{{}\begin{matrix}n=3\Rightarrow p+e+n=9\left(loại\right)\\n=4\Rightarrow p+e+n=10\left(loại\right)\end{matrix}\right.\)
Xét \(p=4⇒\left\{{}\begin{matrix}n=4\Rightarrow p+e+n=12\left(loại\right)\\n=5\Rightarrow p+e+n=13\left(tm\right)\\n=6\Rightarrow p+e+n=14\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow A=p+n=4+5=9\left(u\right)\)
\(KHNT:^9_4Be\)