Dựa vào 2/n(n+1)(n+2)= 1/n(n+1) - 1/(n+1)(n+2)
Dựa vào 2/n(n+1)(n+2)= 1/n(n+1) - 1/(n+1)(n+2)
Tìm k biết:
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
Tính\(A=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)
Tìm số nguyên k sao cho A=\(\frac{1}{1.2.3}.\frac{1}{2.3.4}.\frac{1}{3.4.5}.....\frac{1}{98.99.100}=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
Số trong đẳng thức trên có giá trị là
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.............+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\). Số k trong đẳng thức trên có giá trị là
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
chữ số k trong đẳng thức trên có g.trị là
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+......+\frac{1}{98.99.100}\right).x=-3\)
\(\frac{1}{1.2.3}.\frac{1}{2.3.4}.\frac{1}{3.4.5}...\frac{1}{98.99.100}\)
Tìm x biết
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2017.2018.2019}\right)x=\frac{23}{45}\)