ĐKXĐ:x,y,z>=0
\(giảiđược\)
\(\left(x-\sqrt{y}\right)^2=x-y\)(1)
\(\left(y-\sqrt{z}\right)^2=y-z\)(2)
\(\left(z-\sqrt{x}\right)^2=z-x\)(3)
từ (2) ta thấy y>=z
mà lấy (1)+(3) thfi được z-y=......>=0
=> z>=y
=> y=z
chứng minh tương tựu được x=y=z
ĐKXĐ:x,y,z>=0
\(giảiđược\)
\(\left(x-\sqrt{y}\right)^2=x-y\)(1)
\(\left(y-\sqrt{z}\right)^2=y-z\)(2)
\(\left(z-\sqrt{x}\right)^2=z-x\)(3)
từ (2) ta thấy y>=z
mà lấy (1)+(3) thfi được z-y=......>=0
=> z>=y
=> y=z
chứng minh tương tựu được x=y=z
Cho x,y,z thuộc Z thỏa mãn \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\).
Tìm GTLN của A=\(\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x,y,z thỏa mãn x+y+z=1
Tìm GTLN của Q=\(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
Cho ba số thực x, y, z thỏa mãn \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)
Tìm GTLN của biểu thức \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
cho x;y;z là các số dương thỏa mãn x+y+z=1.Chứng minh \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\)
Cho x, y, z là các số thực không âm thỏa mãn x+y+z =1
tìm GTLN của biểu thức:
P = \(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
Cho x, y, z>0 thỏa mãn \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\). Tìm GTLN của:
\(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
Giúp mình với help :((
Cho các số dương x,y,z thỏa mãn : x + y + z = 1
Tìm giá trị nhỏ nhất của biểu thức:
M = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Cho 3 số dương a y z thỏa mãn xyz=1 ,tìm GTNN của
P= \(\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(y+x\right)}{x\sqrt{x}+2y\sqrt{y}}\)