Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Đức Lê

Tìm x,y,z biết:

\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y+2}=x+y+z\left(x,y,z\ne0\right)\)

Linhx72002
1 tháng 5 2015 lúc 10:09

Dùng tính chất tỉ lệ thức: \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{e}{f}\)=\(\frac{a+b+c}{b+d+f}\) ( Có b+d+f \(\ne\)0 )

* Trước tiên ta xét trường hợp x+y+z=0 có:

\(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)=0    =>x=y=z=0

* Xét x+y+z=0,tính chất tỉ lệ thức:

x+y+z=\(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)=\(\frac{x+y+z}{2x+2y+2z}\)=\(\frac{1}{2}\)

=>x+y+z=\(\frac{1}{2}\) Và 2x=y+z+1=\(\frac{1}{2}\)-x+1=>x=\(\frac{1}{2}\)

                         2y=x+z+1=\(\frac{1}{2}\)-y+1=>y=\(\frac{1}{2}\)

                          z=\(\frac{1}{2}\)-(x+y)=\(\frac{1}{2}\)-1=\(\frac{-1}{2}\)

Vậy có cặp (x,y,z) thỏa mãn:(\(\frac{1}{2}\),\(\frac{1}{2}\),\(\frac{-1}{2}\))


Các câu hỏi tương tự
Hoàng Xuân Ngân
Xem chi tiết
Moon Moon
Xem chi tiết
Xem chi tiết
Thu Đậu Thị
Xem chi tiết
minh man
Xem chi tiết
Shit
Xem chi tiết
Nguyễn Hữu Cường
Xem chi tiết
Nguyen Ngoc Minh Ha
Xem chi tiết
kudo shinichi
Xem chi tiết