Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Bảo Trân

Tìm x,y,z biết : \(x^2+y^2+z^2=xy+yz+zx\)và \(x^{2014}+y^{2014}+z^{2014}=3\)Tính P =\(x^{25}+y^4+z^{2015}\)

kudo shinichi
3 tháng 11 2018 lúc 18:31

\(x^2+y^2+z^2=xy+yz+zx\)

\(2.\left(x^2+y^2+z^2\right)=2.\left(xy+yz+zx\right)\)

\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2zx=0\)

\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(VT\ge0\forall x;y;z\)( tự c/m. nếu b ko c/m được thì bảo mình )

Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)

Có \(x^{2014}+y^{2014}+z^{2014}=3\)

\(\Rightarrow3.x^{2014}=3\)

\(\Rightarrow x^{2014}=1\)

\(\Rightarrow x=1\)

\(\Rightarrow x=y=z=1\)

Có: \(P=x^{25}+y^4+z^{2015}\)

\(\Rightarrow P=1^{25}+1^4+1^{2015}\)

\(P=1+1+1\)

\(P=3\)

Vậy \(P=3\)

Tham khảo nhé~

ST
3 tháng 11 2018 lúc 18:33

Ta có: x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>(x2-2xy+y2)+(y2-2yz+z2)+(z2-2zx+x2)=0

<=>(x-y)2+(y-z)2+(z-x)2=0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)

=>\(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow x=y=z}\)

=>x2014=y2014=z2014

Lại có: x2014+y2014+z2014 = 3

=>3x2014 = 3 => x2014 = 1 => \(x=\pm1\)

=>\(x=y=z=\pm1\)

Thay x,y,z vào P rồi tính

kudo shinichi
3 tháng 11 2018 lúc 18:34

Nhầm.

Tui thiếu trường hợp x=-1

b tham khảo bài của  ST nhé

Phùng Minh Quân
3 tháng 11 2018 lúc 18:35

\(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow}x=y=z}\)

\(x^{2014}+y^{2014}+z^{2014}=3\)

\(\Leftrightarrow\)\(3x^{2014}=3\)

\(\Leftrightarrow\)\(x^{2014}=1\)

\(\Rightarrow\)\(x=y=z=1\)

\(P=x^{25}+y^4+z^{2015}=1^{25}+1^4+1^{2015}=1+1+1=3\)

Vậy \(P=3\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
3 tháng 11 2018 lúc 18:36

nhầm tí..

\(\Rightarrow\)\(x=y=z=\pm1\)

\(\Rightarrow\)\(P=1+1+1=3\) hoặc \(P=-1+1-1=-1\)

Chúc bạn học tốt ~ 


Các câu hỏi tương tự
Nguyễn Nhật Quỳnh Trang
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Me
Xem chi tiết
Dương Ngọc Minh
Xem chi tiết
Vũ khoa
Xem chi tiết
Nguyên
Xem chi tiết
Hoàng Bảo Trân
Xem chi tiết
vuong nguyen
Xem chi tiết
Bẹp Khanh
Xem chi tiết