phân tích thành nhân tử
\(A=x^3+y^3+z^3-3xyz\)
từ đó tìm nghiệm nguyên (x, y, z) của phương trình
\(x^3+y^3+z^3-3xyz=x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(z-x\right)^2\)
thỏa mãn điều kiện
\(max\left(x,y,z\right)< x+y+z-max\left(x,y,z\right)\)
1,Cho x,y>0 và xy=2018. Tìm Pmin= 2/x + 1009/y - 2018/(2018x+4y)
2,Cho x,y>0 và x+y=1. Tìm Min B=1/x3+y3 +1/xy
3,Nếu x,y thuộc N* và 2x+3y=53. Tìm max của căn(xy+4)
4,Tìm min P=x^2 +xy +y^2 -3x -3y +2019
5,Cho 0<x<2. Tìm min A= 9x/2-x +2/x
6,Tìm min D= x/y+z + y+z/x + y/x+z + z+x/y + z/x+y + x+y/z
Làm ơn giải giùm mình với, ngay mai kiểm tra rồi.
Cảm ơn nhiều :)))))
a)Cho x+y+z=3. Tìm Min của M = x2+y2+z2
b) tìm Max của P = \(\frac{x}{\left(x+10\right)^2}\)
tìm min p=x^2+x/x+y^2+y/y+z^2+z/z -1/x+y+z biết x^2+y^2+z^2=3
Bài 1: cho x,y là các số thực thõa mãn \(\sqrt{x+2}-y^3=\sqrt{y+3}-x^3.\)
tìm MIN của \(B=x^2-2y^2+2xy+2y+10\)
Bài 2: cho 3 số thực x,y,z thỏa mãn \(x^2+y^2+z^2=3\)
tìm MAX và MIN của \(P=x+y+2z\)
Cho \(x^2+y^2+z^2=3\left(x,y,z\in Z\right)\). Tìm \(max\)và \(min\)của \(A=x+y+z+27\)
cho x;y;z nguyên ; x+y+z=5 ;\(x^2+y^2+z^2=9\) tìm min và max các giá trị của x;y;z
cho các số không âm x,y,z thỏa mãn x+y+z=3
tìm mã và min của \(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)
Cho \(x,y,z\in R\)và \(x^2+y^2+z^2=1\)Tìm GTLN của \(P=x^3+y^3+z^3-3xyz\)