đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k;y=9k;z=5k\)
Mà xyz = 20
\(\Rightarrow\)12k . 9k . 5k = 20
\(\Rightarrow\)540k3 = 20
\(\Rightarrow\)k3 = \(\frac{1}{27}\)
\(\Rightarrow\)k = ( -3 )
\(\Rightarrow\)x = -36 ; y = -27 ; z = -15
Ta có:
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\Leftrightarrow x=12k;y=9k;z=5k\) và \(xyz=20\)
\(\Rightarrow12k.9k.5k=20\)
\(\Rightarrow540k^3=20\Leftrightarrow k=\sqrt[3]{20:540}=\frac{1}{3}\)
\(\hept{\begin{cases}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{cases}}\)
Vậy x = 4; y = 3 ; z = 5/3