x/2=y/3=z/4
=>y=3/2x và z=2x
=> y^2=9/4x^2 và z^2=4x^2
Thế vào x^2 – y^2 + 2z^2 = 108
=> x^2 - 9/4x^2 + 2.4x^2=108
<=> 27/4 . x^2 = 108
<=> x^2 = 16
<=> x=4
=> y= 3/2 x = 3/2 . 4 =6 và z=2x=2.4=8
x/2=y/3=z/4
=>y=3/2x và z=2x
=> y^2=9/4x^2 và z^2=4x^2
Thế vào x^2 – y^2 + 2z^2 = 108
=> x^2 - 9/4x^2 + 2.4x^2=108
<=> 27/4 . x^2 = 108
<=> x^2 = 16
<=> x=4
=> y= 3/2 x = 3/2 . 4 =6 và z=2x=2.4=8
Tìm x,y,z biết :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2-y^2+2z^2=108\)
tìm x,y,z biết
a,\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và x-y+z=-49
b,\(\frac{x}{3}=\frac{y}{4};\frac{y}{4}=\frac{z}{7}\)và 2x+3y-z=186
c,\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}vàx^2-y^2+2z^2=108\)
Tìm x,y,z biết: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x2-y2+2z2=108
Tìm x,y,z biết: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}vàx^2-y^2+2z^2=108\)
Tìm \(x,y,z\)biết :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2-y^2+2z^2=108\)
Tìm x,y,z biết: \(\frac{x}{x+2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2-y^2+2z^2=108\)
Tìm x, y, z, biết:
a) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và 3x - 4y + 5z = 6
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và x.y.z = 810
c)\(\frac{3x}{2}=\frac{y}{3}=\frac{z}{4}\)và 9x2 - y2 + 2z2 = 108
d)\(\frac{2}{x-1}=\frac{3}{y-2}=\frac{4}{z-3}\)và 2x + 3y - z
Tìm x,y,z biết
\(\frac{x}{2}\)= \(\frac{y}{3}\) = \(\frac{z}{4}\) và x2 - y2 + 2z2 = 108
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x2 - y2 + 2z2= 108
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và xyz= -480