\(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5}\)\(\Rightarrow\)\(5.\left(y^2-x^2\right)=3.\left(x^2+y^2\right)\)
\(\Rightarrow\)\(5y^2-5x^2=3x^2+3y^2\)
\(\Rightarrow\)\(2y^2=8x^2\)
\(\Rightarrow y^2=4x^2\)
\(\Rightarrow\)\(y^{10}=1024.x^{10}\)
Mà \(x^{10}.y^{10}=1024\Rightarrow1024.x^{10}.x^{10}\)\(=1024\)
\(\Rightarrow\) \(x^{20}=1\) \(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Với x=1 thì :\(y^{10}=1024\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)
Với x=-1 thì \(y^{10}=1024\)\(\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)
Vậy có 4 bộ \(\left(x,y\right)\)Thỏa mãn là \(\left(1;2\right);\left(1;-2\right);\left(-1;2\right);\left(-1;-2\right)\)
x.y=+-2
y^2/4=x^2
2x=+-y
=> y^2=4
y=+-2; x=+-1