Nếu theo như mình đoán thì đáp án như sau:
x=2,y=3,z=6
và có thể tráo đổi vị trí của đáp án đó lại với nhau cũng được
cố lên nhé
Nếu theo như mình đoán thì đáp án như sau:
x=2,y=3,z=6
và có thể tráo đổi vị trí của đáp án đó lại với nhau cũng được
cố lên nhé
Tìm x, y, x thỏa mãn: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Tìm x,y,z thỏa
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
Cho ba số x , y , z khác 0 thỏa mãn $\frac{y+z-x}{x}$ = $\frac{z+x-y}{y}$ = $\frac{x+y-z}{z}$
Tính giá trị biểu thức P = ( 1+$\frac{x}{y}$ )( 1+$\frac{y}{z}$ )( 1+$\frac{z}{x}$ )
tìm các số thực x, y, z thỏa mãn x + y + z = \(\frac{x}{y+z-1}=\frac{y}{z+x-2}=\frac{z}{x+y+3}\)
Cho x, y z thỏa mãn:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính:\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
tìm x,y,z thỏa mãn \(\frac{2x^2}{x^2+1}=y;\frac{2y^2}{y^2+1}=z;\frac{2z^2}{z^2+1}=x\)
cho x;y;z khac 0 thỏa mãn
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}x=\frac{x+y-z}{z}x\)
tính
\(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Cho 3 số x;y;z khác 0 thỏa mãn\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)Hãy tính gt của bt B=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
cho x;y;z khac 0 thỏa mãn
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
tính
\(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)