ta có \(\left(y+1\right)^2\)=\(\frac{32y}{x}\)=> x = \(\frac{32y}{\left(y+1\right)^2}\)=> x =\(\frac{16y^2+32y+16-16y^2-16}{\left(y+1\right)^2}\)=> x =\(\frac{16\left(y+1\right)^2-16\left(y^2-1\right)}{\left(y+1\right)^2}\)=> x = \(\frac{16\left(y+1\right)^2}{\left(y+1\right)^2}\)-\(\frac{16\left(y-1\right)\left(y+1\right)}{\left(y+1\right)^2}\)
=> x = 16 -\(\frac{16\left(y-1\right)}{y+1}\)=> x = 16 - \(\frac{16y+16-32}{y+1}\)=> x= 16-16 +\(\frac{32}{y+1}\)=> x= \(\frac{32}{y+1}\)
Vì x\(\in\)Z => \(\frac{32}{y+1}\)l \(\in\) Z => 32 \(⋮\)y+1 => y+1 \(\in\)Ư (32) = ( 1 ; 2;4;8;16;32;-1;-2;-4;-8;-16;-32)
đến đây dễ rồi tự làm