1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
Cho biểu thức A = |2x−3y|+|2y+3z|+|x+y+x/z| với z≠0 Tìm x,y,z để A có giá trị bằng 0
Cho biểu thức: G=2x+3/x-1
A) tìm x thuộc Z để G có giá trị nguyên.
B) Tìm c thuộc Z để G đạt giá trị lớn nhất
cho x,y,z là các số hữu tỉ khác 0 , sao cho :\(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x}\)
tính giá trị biểu thức M=(x+y)(y+z)(z+x)/8xyz
Chứng tỏ rằng giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến . A) 2 ( 2x + x^2 ) - x^2 ( x+2 ) + x( x^3 - 4x+ 3 ) B) z ( y-x ) + y ( z-x ) + x ( y+2 ) - 2yz + 100 . C) 2y ( y^2 + y + 1 ) - 2y ^2 ( y +1 ) - 2 ( y + 10 )
Câu 9: Chứng tỏ với mọi giá trị x,y thuộc Q thì giá trị của biểu thức sau luôn luôn là số dương :
M=3[x2+1]+x2y2+y2-2 / [x+y]2+5
Câu10:Tìm cặp số nuyên dương x;y để biểu thức sau có giá trị dương
A=2x+2y-3 / x+y
Cho x,y,z và \(\frac{3}{x+y}=\frac{2}{y+z}=\frac{1}{x+z}\)(giả thiết các phân số trên có nghĩa)
Tính giá trị của biểu thức \(P=\frac{2x+2y+2019z}{x+y-2020z}\)
Tìm giá trị nhỏ nhất của biểu thức sau:
B= (x+2)^2+(y-5/2)^2018-10
D= |2x-1|+|2x-5|
Tìm giá trị LỚN nhất của biểu thức
A= \(\frac{3}{\left(2x-3\right)^4+5}\)
C= \(\frac{27-2x}{12-x}\) (x thuộc Z)
Cho x;y;z là các số hữu tỉ khác 0 , sao cho \(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x}\)
Tính giá trị bằng số của biểu thức M =\(\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}\)