Tìm cặp số nguyên x,y thỏa mãn : \(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\)
Tìm số nguyên x, y thoả mãn \(\left(x+y-2\right)^2=\frac{14}{\left|y-1\right|+\left|y-3\right|}\)
tìm cặp số x,y thỏa mãn:
|x+3|+|x-1|=\(\frac{16}{\left|y+2\right|+\left|y-2\right|}\)
Tìm x,y,z \(\inℚ\)thỏa mãn \(\left(x-\frac{1}{3}\right)\cdot\left(y-\frac{1}{2}\right)\cdot\left(z-5\right)=0\)và x+2=y+1=z+3
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Tìm x, y, z biết:\(\frac{3\left|x\right|+5}{3}=\frac{3\left|y\right|-1}{5}=\frac{3-z}{7}\)và\(2\left|x\right|+7\left|y\right|+3z=-14\)
1. Tìm x, biết:
a) \(9^{x-1}=\frac{1}{9}\)
b) \(\frac{1}{3}:\sqrt{7-3x^2}=\frac{2}{15}\)
2. Tìm các số x,y,z thỏa mãn:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)
Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)