x^2 + 2y^2 - 2xy + 2x + 2 - 4y =0
<=>x^2 + y^2 - 2xy+2x-2y+y^2-2y+1+1=0
<=>(x-y)^2+2(x-y)+1+(y-1)^2=0
<=>(x-y+1)^2+(y-1)^2=0
<=>y=1;x=0
x^2 + 2y^2 - 2xy + 2x + 2 - 4y =0
<=>x^2 + y^2 - 2xy+2x-2y+y^2-2y+1+1=0
<=>(x-y)^2+2(x-y)+1+(y-1)^2=0
<=>(x-y+1)^2+(y-1)^2=0
<=>y=1;x=0
cho x va y thoa man x2+2xy+6x+6y+2y2+8=0.tìm giá trị lớn nhất và bé nhất của biểu thức B=x+y+2016
cmr khong co cac so x,y,x thoa man moi dang thuc sau: A = 2x^2 + y^2 - 2xy + x + 2 = 0
Tìm x thoa mãn:
x2 + y2 + 26 + 10x + 2y =0
5x2+ y2 - 2xy - 4x + 1 =0
2x2 + 2xy - 4x - 2y + 2 + y2 =0
Cho x,y thoa man:x^2+2y^2+2xy-2x-6y+5=0
Tinh gia tri cua bieu thuc:P=(x^2-7xy+51)/x-y. (x khac y)
im x,y thoa man: 2x^t2+4y^2-15xy-12x+45y-24=0 va x^2-2y^2-3x+3y+xy=0
Tìm cap số (x,y) thoa man
\(x^2+y^2=0\)
\(x^2+2y^2+2y\left(1-x\right)=-1\)
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(4x^2+y^2-2\left(2x+y-1\right)=0\)
\(2x^2\left(1-y\right)+y\left(y+xy-2x\right)=0\)
Tìm x,y biết:
a,2x^2+y^2+2xy+10x+25=0
b,x^2+3y^2+2xy-2y+1=0
c,x^2+2y^2+2xy-2x+2=0
3x2 +3y2 +4xy+2x -2y+2=0
tim x,y thoa man dang thuc
Cho x,y,z la cac so thuc khac 0. Thoa man : z2+z(xy-xz-yz)=0
Chung minh rang x2+(x+2y-z)2 / y2+(2x+y-z)2 = x+2y-z / 2x+y-z