Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Harry James Potter

Tìm x;y nguyên thỏa mãn x+y+xy+2=x^2-y^2

 Phạm Trà Giang
15 tháng 2 2020 lúc 20:54

( x+y )2 = xy( xy + 1 ) ⟺ ( x+y )2 = xy( xy + 1 ).

Lại có ( | xy |, | xy+1 | ) = 1( | xy | ,| xy+1 | ) = 1 nên xét:
Nếu xy ≥ 0 xy ≥ 0 thì {xy = a2xy + 1 = b2 {xy = a2xy + 1 = b2
Với a,ba,b nguyên dương. Từ trên ta được a2 = b2 − 1 ⟺ (b−a)(b+a )= 1a2 = b2 − 1 ⟺ (b−a)(b+a) = 1 => a = 0, b = 1

a = 0, b = 1. Từ đó x = y = 0 
Nếu xy ≤ −1xy ≤ −1 (Không thể −1≤ xy ≤ 0−1 ≤ xy ≤ 0 ) được.
Tương tự, đặt {xy = −m2xy + 1 = −n2{xy = −m2xy + 1 = −n2
Trong đó m,nm,n nguyên dương. Tương tự như trên tìm được m,nm,n và tìm được x,yx,y

Khách vãng lai đã xóa