Ta có : xy + x + y + 1 = 2
<=> xy + x + y + 1 = 2
<=> x(y + 1) + y + 1 = 2
<=> x(y + 1) + (y + 1) = 2
<=> (y + 1).(x + 1) = 2
Do đó y + 1 ; x + 1 thuộc Ư(2) = {-2;-1;1;2}
Ta có bảng :
y + 1 | -2 | -1 | 1 | 2 |
x + 1 | -1 | -2 | 2 | 1 |
y | -3 | -2 | 0 | 1 |
x | -2 | -3 | 1 | 0 |
\(xy+x+y+1=2\)
\(\Rightarrow\left(x+1\right)y+x+1=2\)
\(\Rightarrow\left(x+1\right)y+x-2+1=0\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=2\)
\(\Rightarrow x+1\ne0;y=\frac{1-x}{x+1}\)