x = 225 , y = 3 nhé :)
Phần giải mình đã làm cho bạn ở H.vn
x = 225 , y = 3 nhé :)
Phần giải mình đã làm cho bạn ở H.vn
1/ Tim x, y nguyen duong thoa man: \(y=\sqrt[3]{18+\sqrt{x+100}}+\sqrt[3]{18-\sqrt{x+100}}\)
a) Cho x;y dương thỏa mãn xy=1. Tìm GTNN: D= x2+3x+y2+3y+\(\frac{9}{x^2+y^2+1}\)
b) Với \(1\le x\le\frac{4\sqrt{3}}{3}\)Tìm GTLN của y=\(8\sqrt{x-1}+x\sqrt{16-3x^2}\)
cho x, y, z dương thỏa mãn x>y CM:
\(\sqrt{x+y}-\sqrt{x}< \sqrt{y+z}-\sqrt{y}\)
Tìm x, y, z thỏa mãn phongw trình:
\(x+y+z-2009=2\sqrt{x-19}+4\sqrt{y-7}+6\sqrt{z-1997}\)
Cho các số thực dương x, y, z thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
Tìm giá trị nhỏ nhất của biểu thức:\(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho các số thực dương x, y ,z thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
Tìm giá trị nhỏ nhất của biểu thức: \(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Tìm số nguyên dương n thỏa mãn: \(\sqrt{\left(3+2\sqrt{2}\right)^n}+\sqrt{\left(3-2\sqrt{2}\right)^n}=6\)
\(a)\) Cho 3 số không âm x, y, z thỏa mãn: \(x^2+y^2+z^2=1\).
Tìm giá trị nhỏ nhất của biểu thức: \(M=x+y+z-3\)
\(b)\)Cho 2 số dương x, y thỏa mãn: \((\sqrt{x}+1)(\sqrt{y}+1)\ge4\).
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{x^2}{y}+\frac{y^2}{x}\)
1.cho biểu thức \(P=\left(\frac{2x+\sqrt{x}}{x\sqrt{x}-1}-\frac{2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a, rút gọn biểu thức P
b,tìm các giá trị của x để biểu thức P có giá trị nguyên
2.. tìm các cặp số nguyên(x;y) thỏa mãn \(x^2+xy-3x-y-5=0\)
3..giải phương trình \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)