Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yomi-san Gacha

tìm xy nguyên biết x^4 -2y^2=1

Trần Minh Hoàng
22 tháng 7 2021 lúc 20:04

Từ giả thiết ta có \(2y^2=\left(x^2-1\right)\left(x^2+1\right)\).

Từ đó \(x^2=2k+1\left(k\in N\right)\) nên \(2k\left(k+1\right)=y^2\).

Suy ra |y| chẵn. Đặt |y| = 2h thì \(k\left(k+1\right)=2h^2\).

+) Nếu k = 0 thì x = 1 hoặc x = -1; y = 0.

+) Nếu k > 0 thì ta có (k, k + 1) = 1. Mặt khác x2 chia 4 dư 1 nên k chẵn. Từ đó \(k=2u^2;k+1=v^2\Rightarrow x^2=2k+1=4u^2+1\)

\(\Rightarrow\left(x-2u\right)\left(x+2u\right)=1\).

Do đó x - 2u = x + 2u = 1 hoặc x - 2u = x + 2u = -1. Suy ra x = 1 hoặc x = -1. Tương ứng ta có y = 0.

Vậy x = 1; y = 0.


Các câu hỏi tương tự
Nguyễn Hà Anh
Xem chi tiết
ahihi
Xem chi tiết
Nhat Pham Long
Xem chi tiết
Vinh Lê Thành
Xem chi tiết
Nhật Vy Nguyễn
Xem chi tiết
Nguyễn Văn Hùng
Xem chi tiết
Gia Huy Ngo
Xem chi tiết
long kỵ
Xem chi tiết
Thư Lê
Xem chi tiết