tìm tất cả các số nguyên dương x;y sao cho các số: (x^2) + 3y và y^2 +3x đều là các ssoos chính phương
1)Tìm x;y là số nguyên dương sao cho x2 +3y và y2 +3x đều là số chính phương
2) Tìm x; y là các số tự nhiên thỏa mãn: 0<x<9; 1<y<9 sao cho xxyy = x+1,x+1. y-1,y-1
tìm tất cả các số nguyên dương X,Ysao cho các số x^2+3*y và y^2+3*x đều là số chính phương?
2) tìm các số nguyên dương x,y sao cho :
a, | 2x - 3 | = 7
b, 3/2x = 7/10 - y/5
3) tìm số nguyên tố có 2 chữ số khác nhau dạng ab sao cho ba cũng là số nguyên tố và hiệu ab - ba là số chính phương.
Chứng Minh Rằng: Nếu x,y nguyên thỏa mãn hệ thức 2x2+x=3y2+y thì x-y, 2x+2y+1 và 3x+3y+1 là các số chính phương.
Bài 1 : Tìm p sao cho p và p4+2 đều là số nguyên tố .
Bài 2 : TÌm các số tự nhiên n khác 0 sao cho x = 2n+2003 và y = 3n+2005 đều là số chính phương .
câu 4 số chính phương có 2 chữ số sao cho mỗi số của mỗi số đều là số chính phương
câu 6 số các cặp số nguyên x,y thỏa mãn |x -2|+3|y| = 10 là
chứng minh rằng nếu x,y nguyên thỏa mãn hệ thức 2x2+x=3y2+ỵ thì x-y , 2x-2y+1 , 3x-3y+2 là các số chính phương