Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
\(\Leftrightarrow x=3k,\)\(y=4k\)
\(\Leftrightarrow x\times y=3k\times4k\)
\(\Leftrightarrow192=12k^2\)
\(\Leftrightarrow k^2=192:12\)
\(\Leftrightarrow k^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}k=4\\k=-4\end{cases}}\)
Với k = 4 ta có :
+) \(\frac{x}{3}=4\Rightarrow x=12\)
+) \(\frac{y}{4}=4\Rightarrow y=16\)
Với k = -4 ta có :
+) \(\frac{x}{3}=-4\Rightarrow x=-12\)
+) \(\frac{y}{4}=-4\Rightarrow y=-16\)
Vậy \(\left(x;y\right)=\left\{\left(12;16\right);\left(-12;-16\right)\right\}\)
_Chúc bạn học tốt_
ta có: \(\frac{x}{3}=\frac{y}{4}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\frac{y}{4}=k\Rightarrow y=4k\)
mà \(x.y=192\Rightarrow3k.4k=192\)
\(12.k^2=192\)
\(k^2=192:12\)
\(k^2=16\)
=> k = 4 hoặc k = - 4
TH1: k =4
có: x = 3k =>x = 3.4 => x = 12
y = 4.k => y = 4.4 => y = 16
TH2: k = - 4
có: x = 3k => x = 3.(-4) => x = -12
y = 4k => y = 4.(-4) => y = - 16
KL: \(\left(x;y\right)\in[\left(12;16\right);\left(-12;-16\right)]\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}\)
\(\Rightarrow\frac{x.y}{3.4}=\frac{192}{12}\)\(=16\)( Tính chất của dãy tỉ số bằng nhau)
Vì \(\frac{x}{3}=16\Rightarrow x=16.3=48\)
\(\frac{y}{4}=16\Rightarrow y=16.4=64\)
Vậy :\(x=48\)
\(y=64\)
Đúng thì mk nha
~Hok Tốt~
Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
=> \(\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)(1)
và \(xy=192\)(2)
Thế (1) vào (2), ta có:
\(3k.4k=192\)
=> \(12k=192\)
=> \(k=16\)
Ta có \(\frac{x}{3}=16\)=> x = 48
và \(\frac{y}{4}=16\)=> y = 64.